Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia.
نویسندگان
چکیده
G-protein-coupled receptor 41 (GPR41) also called free fatty acid receptor 3 (FFAR3) is a Gαi-coupled receptor activated by short-chain fatty acids (SCFAs) mainly produced from dietary complex carbohydrate fibers in the large intestine as products of fermentation by microbiota. FFAR3 is expressed in enteroendocrine cells, but has recently also been shown to be present in sympathetic neurons of the superior cervical ganglion. The aim of this study was to investigate whether the FFAR3 is present in other autonomic and sensory ganglia possibly influencing gut physiology. Cryostat sections were cut of autonomic and sensory ganglia of a transgenic reporter mouse expressing the monomeric red fluorescent protein (mRFP) gene under the control of the FFAR3 promoter. Control for specific expression was also done by immunohistochemistry with an antibody against the reporter protein. mRFP expression was as expected found not only in neurons of the superior cervical ganglion, but also in sympathetic ganglia of the thoracic and lumbar sympathetic trunk. Further, neurons in prevertebral ganglia expressed the mRFP reporter. FFAR3-mRFP-expressing neurons were also present in both autonomic and sensory ganglia such as the vagal ganglion, the spinal dorsal root ganglion and the trigeminal ganglion. No expression was observed in the brain or spinal cord. By use of radioactive-labeled antisense DNA probes, mRNA encoding the FFAR3 was found to be present in cells of the same ganglia. Further, the expression of the FFAR3 in the ganglia of the transgenic mice was confirmed by immunohistochemistry using an antibody directed against the receptor protein, and double labeling colocalized mRFP and the FFAR3-protein in the same neurons. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) on extracts from the ganglia supported the presence mRNA encoding the FFAR3 in most of the investigated tissues. These data indicate that FFAR3 is expressed on postganglionic sympathetic and sensory neurons in both the autonomic and somatic peripheral nervous system and that SCFAs act not only through the enteroendocrine system but also directly by modifying physiological reflexes integrating the peripheral nervous system and the gastro-intestinal tract.
منابع مشابه
FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing
Free fatty acid receptors 2 and 3 (FFAR2/FFA2/GPR43 and FFAR3/FFA3/GPR41) are mammalian receptors for gut microbiota-derived short-chain fatty acids (SCFAs). These receptors are promising drug targets for obesity, colitis, colon cancer, asthma, and arthritis. Here, we demonstrate that FFAR2 and FFAR3 interact to form a heteromer in primary human monocytes and macrophages via proximity ligation ...
متن کاملExpression of short-chain fatty acid receptor GPR41 in the human colon.
Short-chain fatty acids (SCFAs), including acetate, propionate and butyrate, are the most commonly found anions found in the monogastric mammalian large intestine, and are known to have a variety of physiological and pathophysiological effects on the gastrointestinal tract. We investigated the protein and mRNA expression levels of GPR41, a possible G protein coupled receptor for SCFA, using Wes...
متن کاملRegulation of Energy Homeostasis by GPR41
Imbalances in energy regulation lead to metabolic disorders such as obesity and diabetes. Diet plays an essential role in the maintenance of body energy homeostasis by acting not only as energy source but also as a signaling modality. Excess energy increases energy expenditure, leading to a consumption of it. In addition to glucose, mammals utilize short-chain fatty acids (SCFAs), which are pro...
متن کاملHuman GPR42 is a transcribed multisite variant that exhibits copy number polymorphism and is functional when heterologously expressed
FFAR3 (GPR41) is a G-protein coupled receptor for which short-chain fatty acids serve as endogenous ligands. The receptor is found on gut enteroendocrine L-cells, pancreatic β-cells, and sympathetic neurons, and is implicated in obesity, diabetes, allergic airway disease, and altered immune function. In primates, FFAR3 is segmentally duplicated resulting in GPR42, a gene currently classified as...
متن کاملShort-Chain Fatty Acids Stimulate Glucagon-Like Peptide-1 Secretion via the G-Protein–Coupled Receptor FFAR2
Interest in how the gut microbiome can influence the metabolic state of the host has recently heightened. One postulated link is bacterial fermentation of "indigestible" prebiotics to short-chain fatty acids (SCFAs), which in turn modulate the release of gut hormones controlling insulin release and appetite. We show here that SCFAs trigger secretion of the incretin hormone glucagon-like peptide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience
دوره 290 شماره
صفحات -
تاریخ انتشار 2015